The neurogenic basic helix–loop–helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation
نویسندگان
چکیده
Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix-loop-helix) transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.
منابع مشابه
The neurogenic basic helix–loop–helix transcription factor NeuroD6 confers tolerance to oxidative stress by triggering an antioxidant response and sustaining the mitochondrial biomass
Preserving mitochondrial mass, bioenergetic functions and ROS (reactive oxygen species) homoeostasis is key to neuronal differentiation and survival, as mitochondria produce most of the energy in the form of ATP to execute and maintain these cellular processes. In view of our previous studies showing that NeuroD6 promotes neuronal differentiation and survival on trophic factor withdrawal, combi...
متن کاملZac1 regulates cell cycle arrest in neuronal progenitors via Tcf4.
Imprinted genes play a critical role in brain development and mental health, although the underlying molecular and cellular mechanisms remain incompletely understood. The family of basic helix-loop-helix (bHLH) proteins directs the proliferation, differentiation, and specification of distinct neuronal progenitor populations. Here, we identified the bHLH factor gene Tcf4 as a direct target gene ...
متن کاملSurvival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins
Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbr...
متن کاملActivation of the phosphatidylinositol 3-kinase/Akt signaling pathway by retinoic acid is required for neural differentiation of SH-SY5Y human neuroblastoma cells.
Retinoic acid (RA) induces neural differentiation of SH-SY5Y neuroblastoma cells. We show that the mRNA levels of the differentiation-inhibiting basic helix-loop-helix transcription factors ID1, ID2, and ID3 are down-regulated during RA-induced differentiation of SH-SY5Y cells. The levels of ID proteins decreased in parallel to the observed transcriptional repression. The expression of other ba...
متن کاملRegulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins.
Basic-helix-loop-helix transcription factors regulate neurogenesis and neuronal differentiation by as yet unknown mechanisms. We show that an embryonic neuronal-specific basic-helix-loop-helix protein, HEN1 (also known as NSCL1 or NHLH), interacts with 'LIM only' proteins. Examination of the expression patterns of XHEN1 and XLMO-3, the Xenopus homologues of these human genes, reveals extensive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2009